Classification with decision trees

Lecture 2

Decision trees

- Decision support tool
- Input: a situation or an object described by a set of attributes
- Output: decision

- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Decision tree – mental model

- Situation: restaurant
- Question: to leave or to stay?

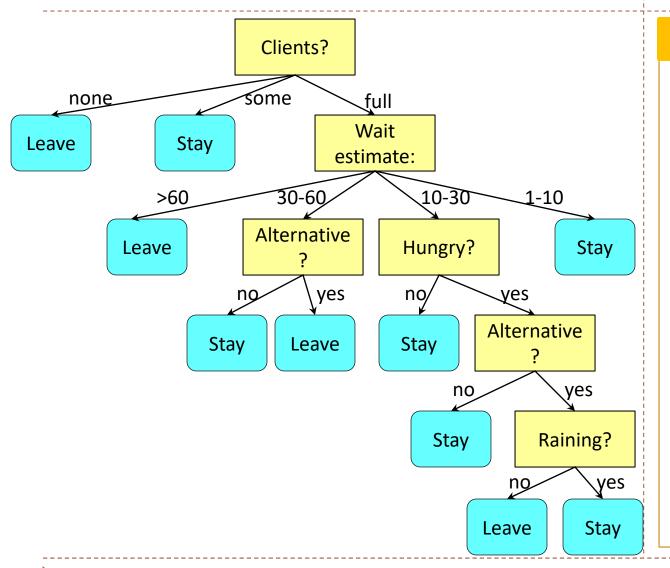
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Decision tree – mental model

- Situation: restaurant
- Question: to leave or to stay?
- Set of important attributes:
 - Alternative restaurants: yes, no
 - Am I hungry?: yes, no
 - Clients?: none, some, full
 - Is it raining?: yes, no
 - Wait estimate: 0-10, 10-30, 30-60, >60
 min

- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

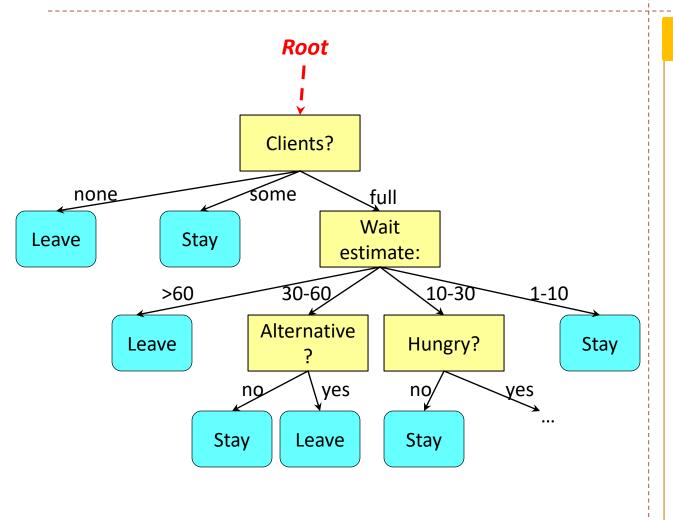
Decision tree – mental model



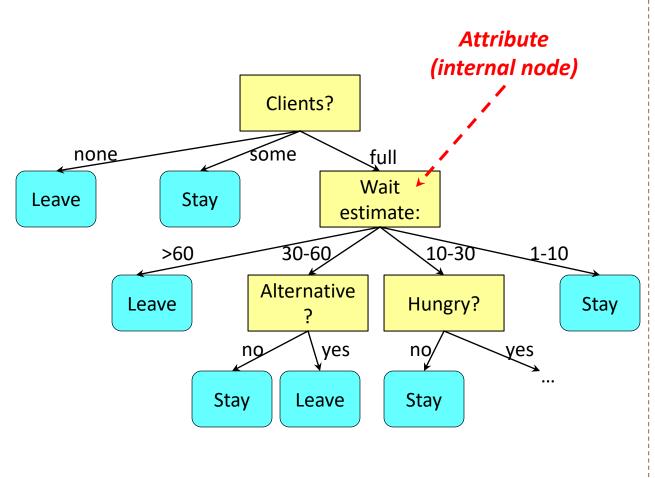
Decision trees

- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

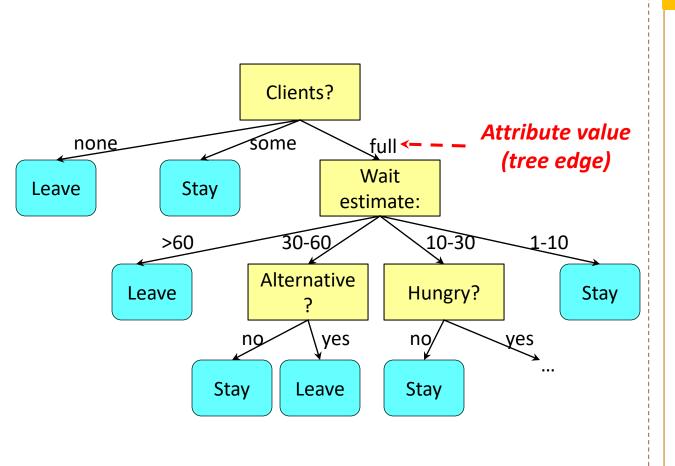
We have mental models for such situations



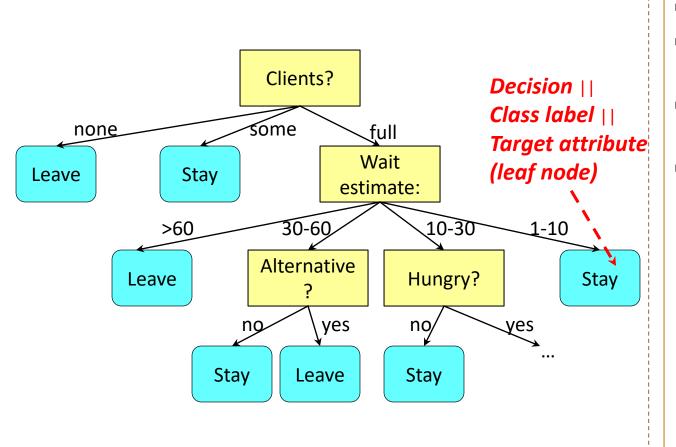
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees



- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees



- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees



- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Machine Learning task

- Looking for *hidden* patterns, structures, models
- Task: generate a decision tree model from tabular data
- Teach computer to generate the model *automatically*, and then to use the model to make an autonomous decision or to assist us with the decision

- Decision trees
 Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Supervised learning

- Input (a set of attributes) and the output (*target* or *class* attribute) are given as a collection of historical records
- Goal: *learn the function* which maps input to output
- Initial output is provided supervised learning
- When the model has been learned, we can use it to predict a class label of a new record – predictive data mining

Decision trees
 Supervised learning

- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Decision tree induction (ID3 algorithm*)

- Normal procedure: top down in a recursive divide-and-conquer fashion
 - First: an attribute is selected for root node and an outgoing edge (a branch) is created for each possible attribute value
 - Then: the instances are split into subsets (one for each branch extending from the node)
 - Finally: the same procedure is repeated recursively for each branch, using only instances that reach that branch
- Process stops if all instances have the same class label

- Decision trees
- Supervised learning

Tree induction algorithm

- Algorithm design issues
- Applications of decision trees

Weather dataset

Outlook	Temp	Play
Sunny	30	Yes
Overcast	15	No
Sunny	16	Yes
Rainy	27	Yes
Overcast	25	Yes
Overcast	17	No
Rainy	17	No
Rainy	35	Yes

Weather $\xrightarrow{?}$ Play (Yes, No)

- Decision trees
- Supervised learning

Tree induction algorithm

- Algorithm design issues
- Applications of decision trees

Categorizing numeric attributes

Temp	
30	
15	
16	
27	
25	
17	
17	
35	

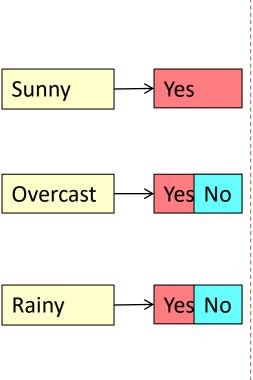
Temp
Hot
Chilly
Chilly
Warm
Warm
Chilly
Chilly
Hot

- Decision trees
- Supervised learning

Tree induction algorithm

- Algorithm design issues
- Applications of decision trees

Outlook	Temp	Play	
Sunny	Hot	Yes	
Overcast	Chilly	No	Su
Sunny	Chilly	Yes	
Rainy	Warm	Yes	O
Overcast	Warm	Yes	0
Overcast	Chilly	No	
Rainy	Chilly	No	Ra
Rainy	Hot	Yes	
		2	



Play (Yes, No)

 \rightarrow

Decision trees

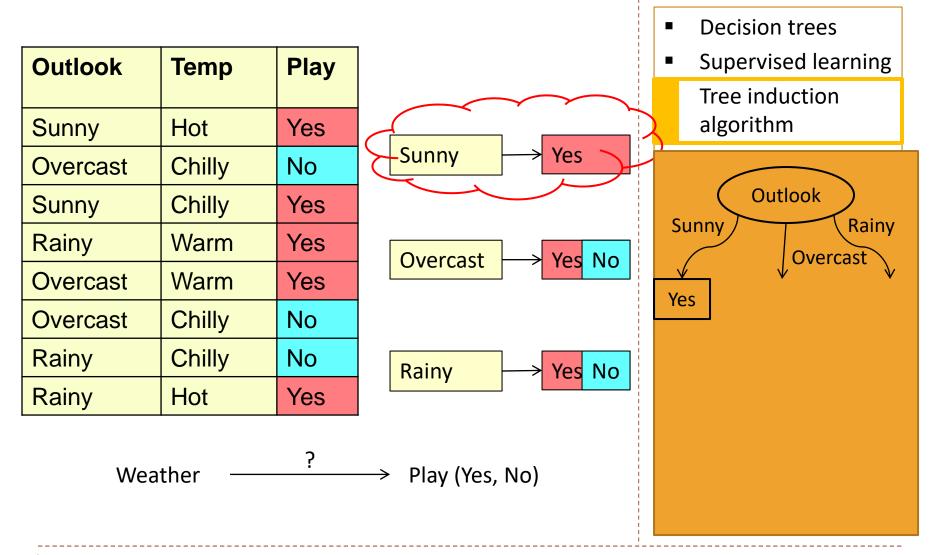
Supervised learning

Tree induction algorithm

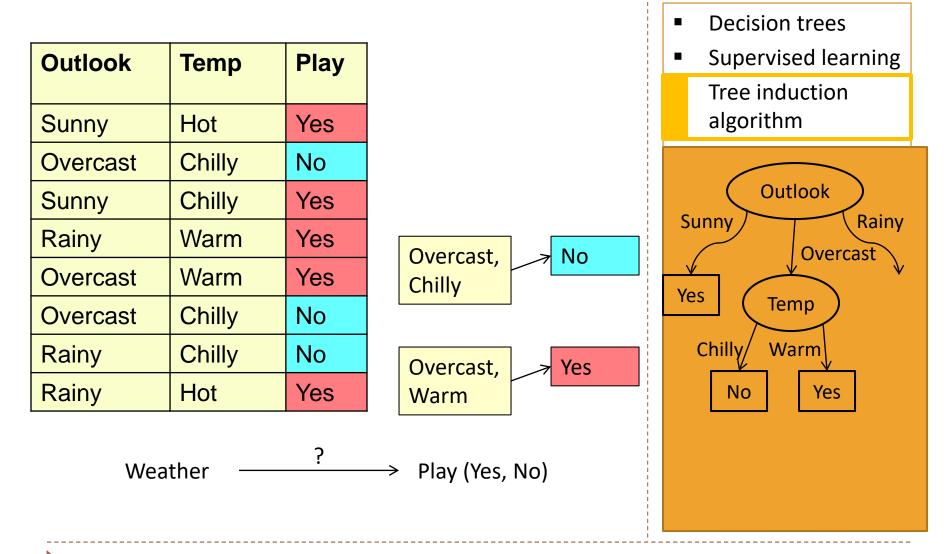
- Algorithm design issues
- Applications of decision trees

Observations about outlook

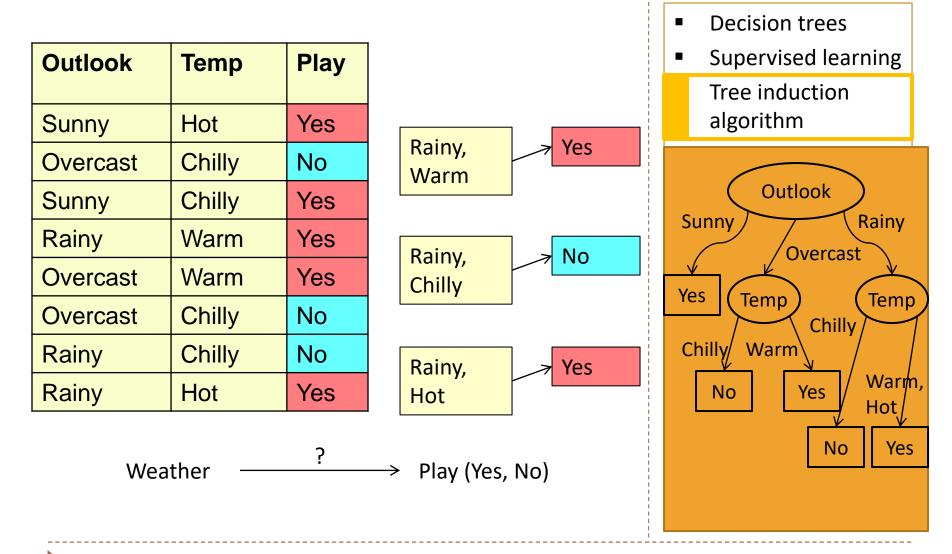
Weather



Observations about outlook: if it is sunny, always play



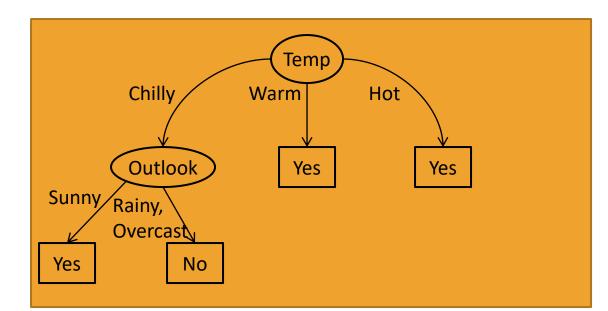
Adding temperature to overcast to arrive to a decision

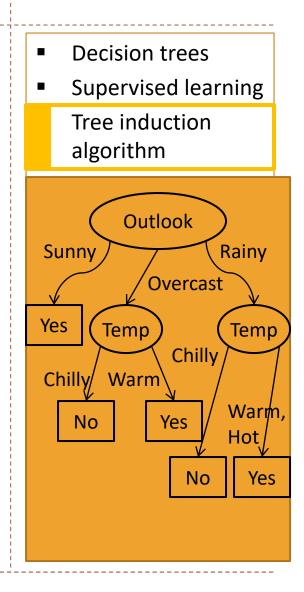


Adding temperature to rainy to arrive to a decision

Variations

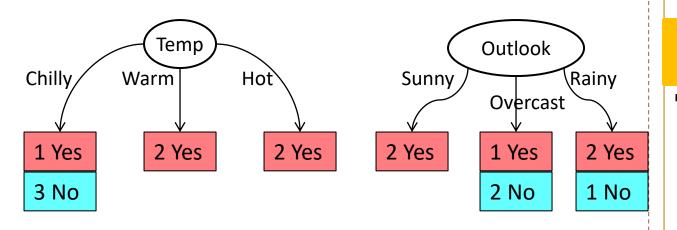
There are many different trees which fit the same data





Design issues

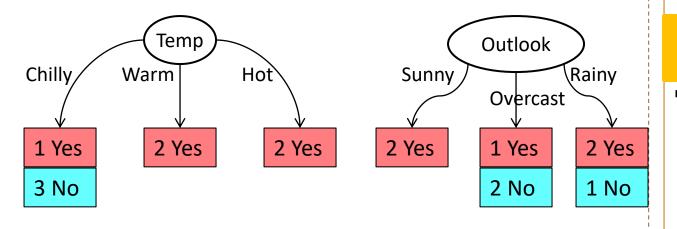
What attribute to select at each step for splitting?



- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Best splitting attribute: intuition

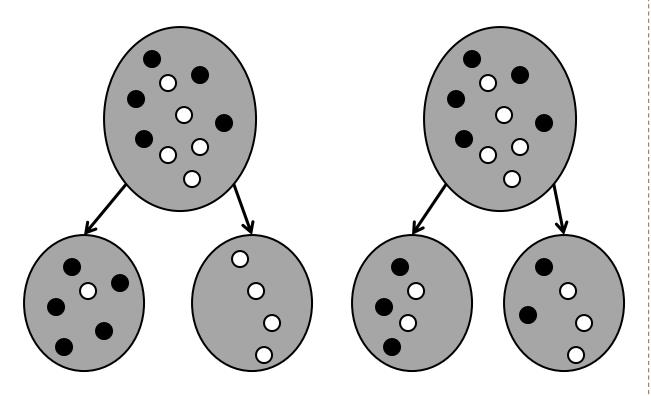
The one which divides records into most class-homogenous groups – into nodes with the highest possible *purity*



- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Purity

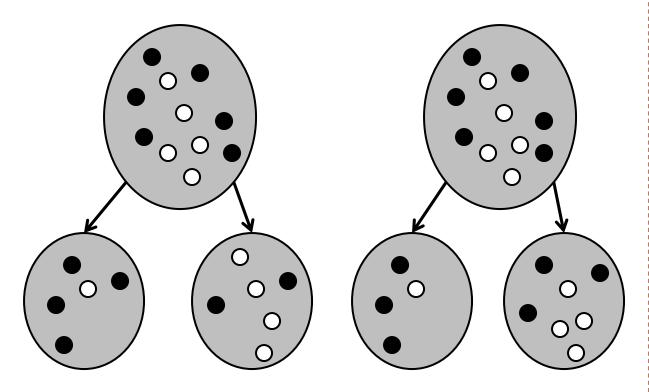
Which split is better?



- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Purity

And now?



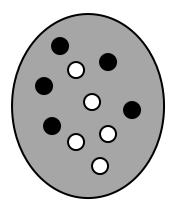
Decision trees

- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

We need a measure of node purity

Purity measure: GINI score

The probability that two items chosen at random are in the same class: the sum of squares of the proportions of the classes



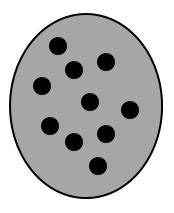
A node with evenly mixed classes has GINI: $0.5^2+0.5^2=0.5$

The chance of picking the same class twice by random selection is: the probability of picking 2 white dots twice (0.5^2) or picking 2 black dots twice (0.5^2) .

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Purity measure: GINI score

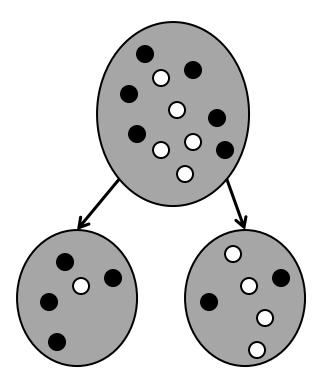
The probability that two items chosen at random are in the same class: the sum of squares of the proportions of the classes



A node with one homogenous class has GINI: 1.0 (The chance of picking the same class twice is 100%)

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Best split with GINI score



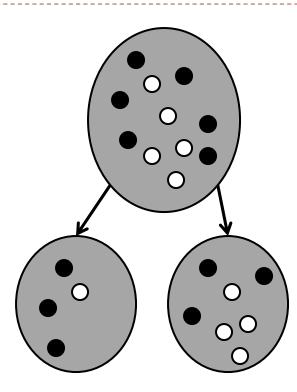
GINI(4,1)=1/5²+4/5²=0.04+0.64=0.68

GINI(2,4)=2/6²+4/6²=0.11+0.44=0.55

We take a *weighted average*: 5/11*0.68 + 6/11*0.55=0.31+0.3=0.61

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Best split with GINI score



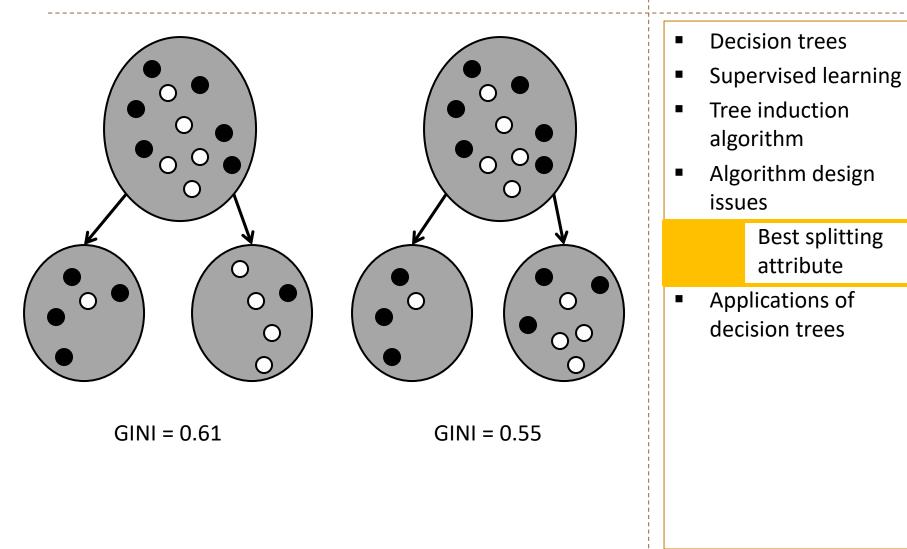
GINI(3,1)=3/4²+1/4²=0.56+0.06=0.62

GINI(3,4)=3/7²+4/7²=0.18+0.33=0.51

We take a *weighted average*: 4/11*0.62 + 7/11*0.51=0.23+0.32=0.55

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

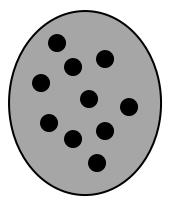
Comparing average GINI scores



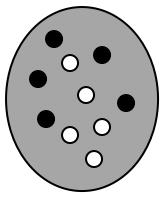
The larger the GINI score, the better

Purity measure: *Entropy*

In information theory *entropy* is a measure of how disorganized the system is



A node with one homogenous class has entropy: 0 (very organized)



A node with evenly mixed population has the largest entropy: 1.0 (most disorganized)

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Digression: Entropy

Bits

- We are watching a set of independent random samples of X
- We see that X has four possible values

$$P(X=A) = 1/4$$
 $P(X=B) = 1/4$ $P(X=C) = 1/4$ $P(X=D) = 1/4$

- So we might see: BAACBADCDADDDA...
- We transmit data over a binary serial link. We can encode each reading with two bits (e.g. A=00, B=01, C=10, D = 11)

0100001001001110110011111100...

Fewer Bits

Someone tells us that the probabilities are not equal

$$P(X=A) = 1/2$$
 $P(X=B) = 1/4$ $P(X=C) = 1/8$ $P(X=D) = 1/8$

- It's possible...
- ...to invent a coding for your transmission that only uses
- 1.75 bits on average per symbol. Here is one.

<u> </u>	
А	0
В	10
С	110
D	111

General Case

Suppose X can have one of *m* values...

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$entropy(p_1,..., p_m) = -p_1 \log_2 p_1 - ... p_m \log_2 p_m$$

 Well, Shannon got to this formula by setting down several desirable properties for uncertainty, and then finding it.

Tree node entropy

 Suppose class attribute X in a given tree node occurs in the following proportions

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

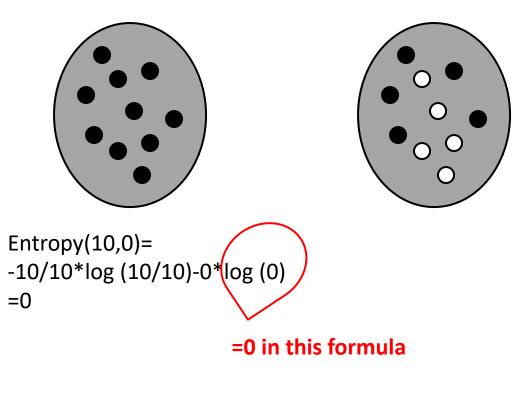
By finding entropy of the node, we evaluate how many bits are needed to encode this node

$$entropy(p_1,..., p_m) = -p_1 \log_2 p_1 - ... p_m \log_2 p_m$$

The smaller the number of bits to encode the entire tree, the better: the *minimum description length* (MDL) principle

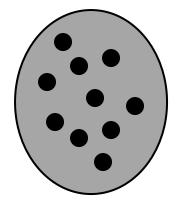
Computing entropy of a node

Compute entropy of a node

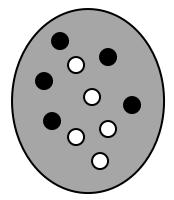


- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Computing entropy of a node



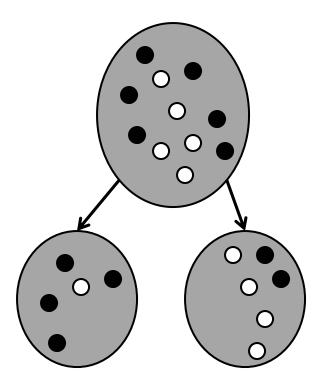
Entropy(10,0)=0



Entropy(5,5)= -5/10*log 5/10 -5/10*log(5/10) =1

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Best split with Entropy reduction



Entropy(4,1)=-4/5 log 4/5-1/5 log 1/5= 0.26+0.46=0.72

Entropy(2,4)=-2/6 log 2/6 - 4/6 log 4/6=0.53+0.39=0.92

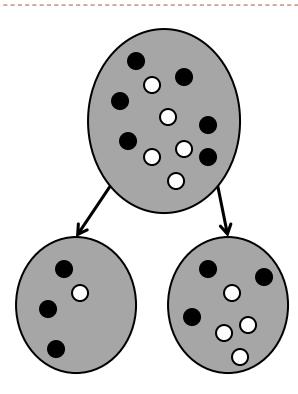
We take a *weighted average*: 5/11*0.72 + 6/11*0.92=0.33+0.5=0.83

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

 Applications of decision trees

Best split with Entropy reduction



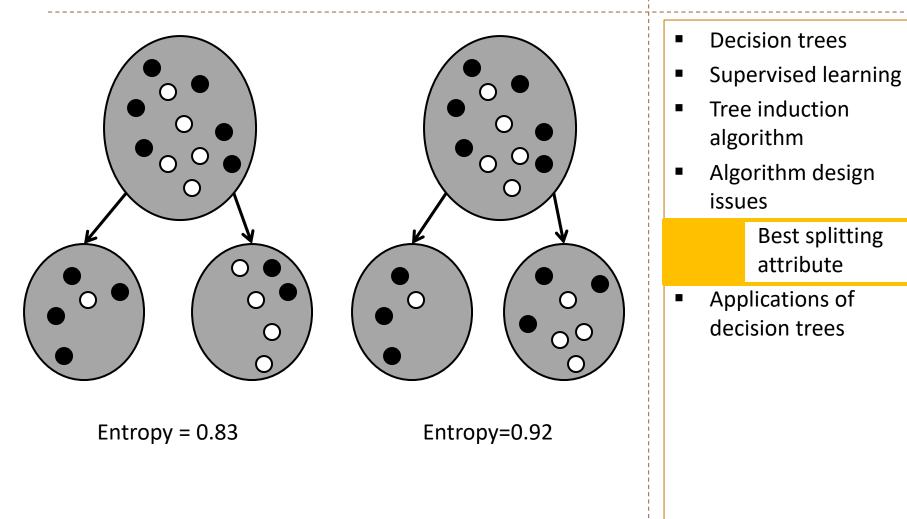
Entropy(3,1)=-3/4 log 3/4-1/4 log 1/4= 0.31+0.5=0.81

Entropy(3,4)=-3/7 log 3/7 - 4/7 log 4/7=0.52+0.46=0.98

We take a *weighted average*: 4/11*0.81 + 7/11*0.98=0.295+0.63=0.92

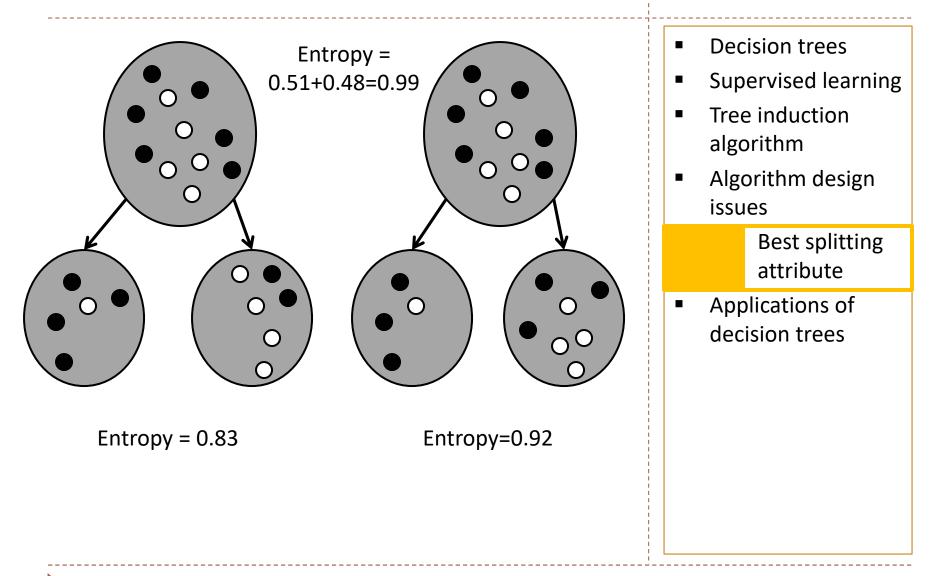
- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
- Applications of decision trees

Comparing average entropies



The smaller the entropy, the better

Entropy reduction or information gain



In this case, it might be better not to split at all, since the information gain is small

To split or not to split?

- Not to split: when the node consists of elements of the same class
- Not to split: when the node consists of elements which have the same attribute values, except the class attribute
- Not to split: when there is no information gain (no significant entropy reduction). Not to split when information gain is insignificant

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

Full tree induction algorithm

- Step 1. Compute entropy of the instances in the current set (in the beginning – the entire dataset).
- Step 2. For each attribute, compute information gain and select the attribute which gives maximum information gain.
- Step 3. Create a node with the selected attribute and create branch for each possible attribute value. Split instances into subsets according to this value.
- **Step 4.** For each subset:

If no split is possible, create leaf node and mark it with the majority class

Else go to Step 1

- Decision trees
- Supervised learning

- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

Example 1: Tree induction from tax cheating dataset

ID	Refund	Marital status	Taxable income	Cheat
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	105 K	No
10	No	Single	110 K	Yes

- Decision trees
- Supervised learning

- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

Example 1: Categorizing numeric features

>=100K \rightarrow high <100K \rightarrow medium

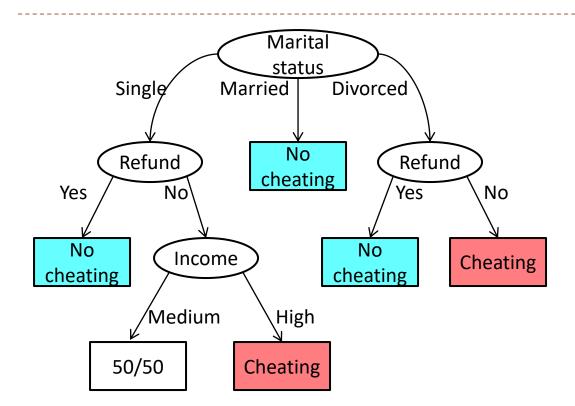
ID	Refund	Marital status	Taxable income	Cheat
1	Yes	Single	high	No
2	No	Married	high	No
3	No	Single	medium	No
4	Yes	Married	high	No
5	No	Divorced	medium	Yes
6	No	Married	medium	No
7	Yes	Divorced	high	No
8	No	Single	medium	Yes
9	No	Married	high	No
10	No	Single	high	Yes

Decision trees

Supervised learning

- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

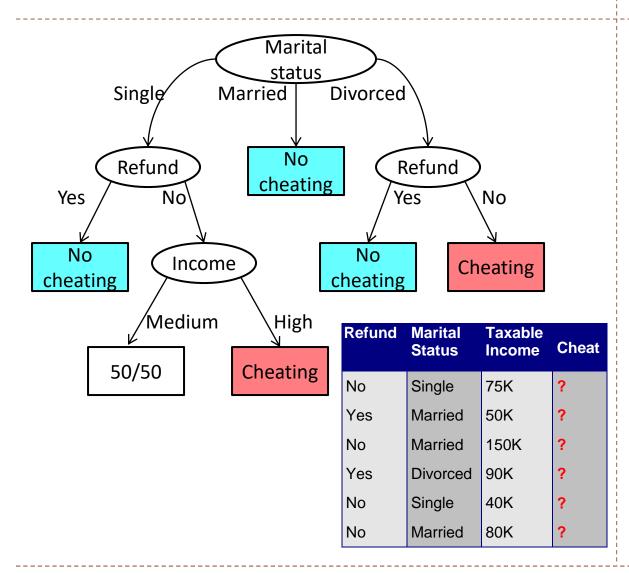
Decision tree for tax cheating dataset



- Decision trees
- Supervised learning

- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

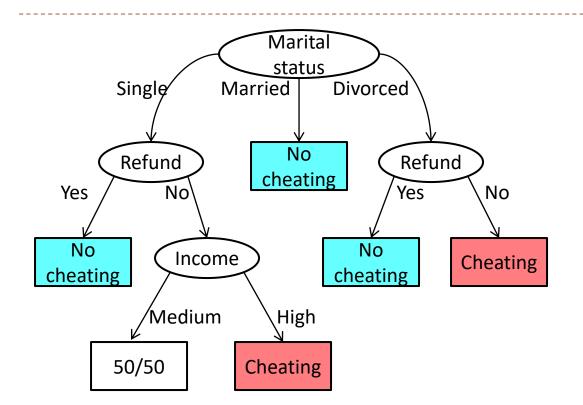
Classify new records



- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

Applications of decision trees

Identify the most important features



The most important features are at the top of the tree

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

Applications of decision trees

When to use decision tree classifier

High performance (use decision trees)

- The factors of the decision are not less important than the classification accuracy
- Attributes with nominal values (not numeric) and with low cardinality*
- Categorical class labels with low cardinality*
- There is a set of objective rules underlying the data

Bad performance (use something else)

- Continuous numeric attributes, ordinal attributes
- Hierarchical relationships between classes
- High-cardinality attributes
- Numeric value prediction

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

Applications of decision trees

Example 2: Tree induction from neighbor dataset

Temp	Precip	Day	Clothes	
22	None	Fri	Casual	Walk
3	None	Sun	Casual	Walk
10	Rain	Wed	Casual	Walk
30	None	Mon	Casual	Drive
20	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-5	Snow	Mon	Casual	Drive
27	None	Tue	Casual	Drive
24	Rain	Mon	Casual	?

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

Example 2: Tree induction from neighbor dataset

Temp	Precip	Day	Clothes	
warm	None	Fri	Casual	Walk
chilly	None	Sun	Casual	Walk
chilly	Rain	Wed	Casual	Walk
warm	None	Mon	Casual	Drive
warm	None	Sat	Formal	Drive
warm	None	Sat	Casual	Drive
cold	Snow	Mon	Casual	Drive
warm	None	Tue	Casual	Drive
warm	Rain	Mon	Casual	?

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees